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Abstract :  The objective of this paper is to generate a desired flight path to be followed by an Unmanned 
Aerial Vehicle (UAV), with specified boundary conditions. The space is supposed without obstacles. After 
the user has defined the goal tasks, the path generator then determines a path for the vehicle that is a 
trajectory in space. The problem of path planning is formulated as an optimization problem: minimum 
energy, minimum acceleration and minimum jerk curves.  
 

INTRODUCTION 
 

Unmanned aerial vehicles are a new focus of research 
because of their important application potential. They 
can be divided into three different types : reduced 
scale fixed wing vehicles (airplanes), rotary wing 
aircraft  (helicopter) or lighter than air (airships). 
A basic problem which has to be solved by 
autonomous vehicles is the problem of motion 
planning. Motion planning means the generation and 
execution of a plan for moving from one location to 
another location in space to accomplish a desired 
task. Moreover, it is desirable that the plan makes 
optimal use of the available resources to achieve the 
goal optimizing some ‘cost’ measure : the time 
required for the execution of the trajectory, its length, 
the deviation from a reference trajectory, control 
effort or energy ... In this paper, trajectories that 
minimize an appropriate measure of smoothness in 
the form of an integral cost function are proposed. 
Depending on the chosen integrand, boundary 
conditions on the derivatives of the desired order can 
be enforced. The motion generation module generates 
a nominal state space trajectory and a nominal control 
input. 
When planning Cartesian trajectories, it is usually 
possible to characterize the performance of different 
trajectories1,2,3,5,6,9. It is natural to regard the trajectory 
planning as a variational problem, where the goal is 
to find a trajectory between given starting and ending 
positions and orientations that minimizes a chosen 
cost function. Additional boundary conditions may be 
specified.  
The set of all 3D rigid body displacements forms a 
Lie group. This group is generally referred to as 
SE(3), the special Euclidean group in 3D. The tangent 
space at the identity endowed with the Lie bracket 
operation has the structure of a Lie algebra and is 
denoted by se(3).  
Curves that minimize the energy between two given 
points are of particular interest. Such curves are 
called geodesics and can be considered as a 
generalization of straight lines in Euclidean space 

to Riemannian manifolds. Some of the geodesics 
for the scale dependent left invariant metric are screw 
motions. Since Chasles theorem guarantees the 
existence of a screw motion between any two points 
on SE(3), a natural question is whether there exists a 
metric for which every geodesic is a screw motion. 
The main result of

nℜ

3,10  is that there are no Riemannian 
metric with such a property. It contains a discussion 
of Riemannian metrics in SE(3).  In the context of 
kinematics, the motion of a rigid body is a curve on 
SE(3), and the velocity at any point is the tangent 
vector to the curve at that point.  
This article is concerned with methods of computing 
a trajectory in 6 degrees of freedom space that 
describes the desired motion. We present two 
different methods: the first one is based on Singular 
Value Decomposition while the second one is based 
on polynomial interpolation by minimizing the 
traveling time, given realistic constraints, the 
generated torques/forces and velocities. 
 

KINEMATICS 
 
Consider a rigid body moving in free space. Assume 
any inertial reference frame {F} fixed in space and a 
frame {M} fixed to the body at a point O’. At each 
instant, the configuration (position and orientation) of 
the rigid body can be described by a homogeneous 
transformation matrix corresponding to the 
displacement from frame {F}to frame {M}. The set 
of all such matrices is called SE(3), the special 
Euclidean group of rigid body transformations in 3D. 
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SE(3) is a Lie group for the standard matrix 
multiplication and it is a manifold. On any Lie group, 
the tangent space at the group identity has the 
structure of a Lie algebra. The Lie algebra of SE(3) 
denoted by se(3), is given by : 
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A 3*3 skew symmetric matrix  can be identified 
with a vector so that for any arbitrary vector 

, where is the vector cross-
product operation in ℜ .  
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Each element can thus be identified with a 

vector pair { }
)3(seS ∈

vω . 

Given a curve [ ] )3(:)( SEaatA →− , an 
element S(t) of the Lie algebra se(3) can be associated 

to the tangent vector at an arbitrary point t by :  )(
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where is the corresponding 
element from SO(3). 
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A curve on SE(3) physically represents a motion of 
the rigid body. If   { })()( tVtω  is the pair 
corresponding to S(t), then ω physically corresponds 
to the angular velocity of the rigid body, while V  is 
the linear velocity of the origin O’ of the frame {M}.  
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We choose a parameterization of SE(3) induced by 
the product structure SO(3)x ℜ . We define a set of 
coordinates 

3

1 ,, d 32321 ,,, ddσσσ for an 

arbitrary element so that 

are the coordinates of d in ℜ . 
Exponential coordinates are chosen as local 
parameterization of SO(3). For 

sufficiently close to the identity (i.e 
excluding the points Tr  (R)= -1 or Tr  (A)= 0 or 
equivalently rotations through angles of 
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3ℜ∈σ where is the skew symmetric matrix 
corresponding to 

^
σ

),,( 321 σσσσ = . σ  is the 

product of the axis and angle of rotation of R. . is 
the standard Euclidean norm. 
The set of all positions and orientations being not 
Euclidean, there is no obvious choice of a metric on 
this set. The norm of the velocity and the distance 
between two positions and orientations is not defined. 
The quadratic form can be interpreted as the 
(rotational) kinetic energy. Consequently, 2G can be 
thought as the inertia matrix of a rigid body with 
respect to a certain choice of the body frame 

ωω GT

{ }M . 
Therefore, for an arbitrarily shaped body with inertia 
matrix 2G we can formulate a positive definite metric 
with matrix : 

GIGTrW −= 3)(
2
1

   eq 7 

Thus this gives a formula for constructing an ambient 
metric space that is compatible with the given 
structure of SO(3). 
Another formulation is possible. In dynamic analysis, 
the kinetic energy of a rigid body is a scalar invariant 
and therefore it makes sense to define the matrix W 
according to the inertial properties of the rigid body. 
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Matrix J is the inertia tensor of the rigid body and M 
is its mass matrix . This metric W is also invariant 
with respect to the choice of the inertial reference 
frame and the squared norm of a velocity vector at a 
point equals to the kinetic energy of the rigid body. 
 

MECHANICAL SYSTEM 
 
In this section, analytic expressions for the forces and 
moments of a system with added mass and inertia 
such as an airship are introduced. An airship is a 
lighter than air vehicle using a lifting gas (helium in 
this particular case) 
The dynamic equations (Euler – Poincaré) are given 
by :  
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 eq 9 

where M and are respectively the vehicle’s mass 
and rotational tensors and τ, β and f, b represent 
respectively the control and non-conservative torques 
and forces in body axes.  

J

For a system with added masses, the term is 
non zero. And we can propose 

Mvv *
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m is the mass of the airship, the propellers and  
actuators. M includes both the airship’s actual mass 
as well as the virtual mass elements associated with 
the dynamics of buoyant vehicles. J includes both the 
airship’s actual inertias as well as the virtual inertia 
elements associated with the dynamics of buoyant 
vehicles. As the airship displays a very large volume, 
its added masses and inertias become very significant. 
Diag(DV ) is the 3*3 aerodynamics forces diagonal 
matrix. Diag(DΩ ) is the 3*3 aerodynamics moments 
diagonal matrix. 

( Te 1003 = )  a unit vector. 

B   :   The 3*1 buoyancy force vector.3e gB ∆= ρ  
where ∆ is the volume of the envelope, ρ is the 
difference between the density of the ambient 
atmosphere ρair and the density of the helium  ρhelium 
in the envelope, g is the constant gravity acceleration. 

 represents the position of the 
center of buoyancy with respect to the body fixed 
frame.  

( bbb zyxBG =
____

)

As the airship is a slow moving vehicle in the air, we 
can assume a linear relationship between the speed 
and the drag. 

If a system is fully actuated, it can be steered along 
any given curve on the configuration manifold, i.e it 
is controllable. This is not true in general for an 
underactuated system. However, an underactuated 
system can be locally controllable if it enjoys the 
property of nonholonomy. The existence of 
nonholonomic constraints translates into the fact that 
the system can be locally steered along a manifold of 
dimension larger than the number of independent 
control inputs.  
 
MOTION PLANNING BASED ON SINGULAR 

VALUE DECOMPOSITION 
 
This section develops a method for generating 
smooth boundary conditions for a moving rigid body 
with specified boundary conditions. The problem is 
well understood in Euclidean spaces, but it is not 
clear how  these techniques can be generalized to 
curved spaces. The smoothness properties and the 
optimality of the trajectories  need also to be 
considered.  
 

PROJECTION ON SO(3) 

Proposition 1: Let with the following block 
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� 
The proof of this proposition can be found in3, 7. 
 
MOTION PLANNING METHOD BASED ON THE 

PROJECTION METHOD 
 
In this section we consider trajectories between a 
starting  and a final position and orientation that 
minimize integral cost functions while possibly 
satisfying boundary conditions. The cost function can 
be the kinetic energy of the rigid body or some other 
measure of smoothness involving velocity or its 
higher derivatives. In particular, we will be interested 
in curves  [ ] )3(,: SEbaA → that minimize 
integrals of the form  
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where boundary conditions on A(t) and its derivatives 
may be specified at the end points a and b. The 
function h returns a vector field. The necessary 
conditions for the optimal trajectory will be derived 
using calculus of variations on manifolds3,7,9,10. 
 

Geodesic 
We illustrate this approach with the example in which 
the cost function is the energy.  
Proposition 2: If A(t) is a geodesic for the metric  
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βα , positive scalars acting like scaling factors for 
angular velocities and linear velocities, the vector pair 
{ }v,ω corresponding to the velocity vector field 

dt
dAV = must satisfy the equation  

xV
dt
dv

dt
d ωω

−== 0   eq 14 

This second equation can be simplified to  0
..

=d
� 

The proof of this proposition can be found in3. 
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Proposition 3: Given two positions and orientations 

 







=








=

10
,

10
ff

f
ii

i

dR
A

dR
A

The shortest distance path (geodesic) is given by  

( )
( )

( )f
T
i

ifi

iifi

RRm

RRaRa
atatB

tmRtR

dtddtd

log

)(
exp)(

)(

0

10

01

01

=Ω

−==
+=

Ω=

+−=

 eq 15 

With the boundary conditions 

fi RBRB == )1()0(   eq 16 

� 
Straight calculations lead to the proof of this 
proposition.  
The minimal geodesic on SE(3) consists of the union 
of the respective geodesics on SO(3) and ℜ . 3

 
Minimum acceleration curves 

Proposition 4 : Let be a 

curve between two prescribed points on SE(3) that 
has prescribed initial and final velocities. If 
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minimizes the cost  function only if the following 
equation holds : 
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With the boundary conditions 

)1(
.

)1(
.

)1()1(

)0(
.

)0(
.

)0()0(

RBRB

RBRB

==

==
  eq 19 

� 

Proof of Proposition 4 is obtained by using the same 
method than in Propositions 2 and 3. 
 

Minimum Jerk curves 
 
The minimum jerk curves between two points is 
obtained by minimizing the integral of the norm of 
the Cartesian jerk, provided that the appropriate 
boundary conditions are given. In particular, 
minimum jerk trajectories are well defined when the 
initial and final velocities and accelerations are 
specified.  
Proposition 5: The minimum jerk trajectories in the 
case when the initial and final velocities and 
accelerations are prescribed to be zero are given by  
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In the general case: 10 ≤≤ t  
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With the boundary conditions 
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� 
Singular Values and Vectors 

 
Proposition 6: If the matrix W is chosen as the 
identity as well as the initial rotation matrix, the 
singular value matrix has the following form :  

))(),(,1( tstsdiag=Ξ     eq 24 

for the geodesic curve 
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For the minimal acceleration curve 
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For the minimal jerk curve 
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The exponential coordinates fσ represents the final 
orientation. 
The left singular vectors (normal eigenvalues of 

) are given by : AAT
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The right singular vectors (normal eigenvalues of 
) can be written as : TAA
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Straight but tedious calculations lead to the proof of 
this Proposition. 
The optimal curves in the ambient manifold assume 
analytical forms. Geodesics are straight lines, 
minimum acceleration curves are cubic polynomial 
curves and minimum jerk curves are fifth order 
polynomial curves, all parameterized by time. As the 
Singular Value Decomposition is a smooth operation, 
the projected curve on SO(3) is smooth. 
When , the exponential coordinates are 

given by: 

1)( ≠Rtr

( )TRR −=
φ

φ
sin2

R=σ log  

Where φ satisfies 

( )1)(
2
1cos −= Rtrφ  Π<φ   eq 30 

.^
RRT=ω     eq 31 

Straight derivations allow to obtain the linear and 
angular accelerations.  
Thus, using the Euler-Poincaré equations, the desired 
inputs can be easily found. 
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A set of equations (depending on the propulsion) 
must be solved to find the reference control u. 
 

MOTION PLANNING BASED ON 
POLYNOMIAL  INTERPOLATION 

 
Using the local parameterization of exponential 
coordinates, It can be seen  that  

.
σω =  

Depending on the initial and final conditions, we can 
propose first, third or fifth degree polynomial 
variations . 
Proposition 7:  
- When the initial and final position di, df and 
orientation fi σσ ,  are known : first order 
polynomial.  
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- When the initial and final position di, df and 

orientation fi σσ , with linear  and angular 

velocities are known : third order polynomial 

fi dd
.

,,
.

fi

.
,

.
σσ

01
2

2
3

3

01
2

2
3

3

)(

)(

atatatat

dtdtdtdtd

+++=

+++=

σ
 eq 34 

with  

( )
( ) ifif

ifif

ii

a

a

aa

..
2

;
.

2
.

3

;
.

;

3

2

10

σσσσ

σσσσ

σσ

++−−=

−−−=

==

 

- When the initial and final position di, df and 

orientation fi σσ ,  with linear   

and angular velocities and 
accelerations are known : fifth order polynomial. 
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  � 
fi σσ , represent respectively the initial and final 

orientation. 
The parameters dj are defined in the same way than 
the coefficients aj (j=1,..,3). 
 

MOTION GENERATION 
 
If we find an input u(t) that achieves a desired motion 

in time 1, then 2
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motion in time T . This time/magnitude scaling 
property should be taken into account when applying 
the motion planning laws4, 5, 6, 8. The predicted arrival 
time can be calculated as the result of an optimization 
problem subject to dynamics and actuators 
constraints4, 5. 
In a general polynomial setting, the linear and angular 
velocities and acceleration can be written as : 
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m=1, 3 or 5 depending on the order of the chosen 
polynomial. 
Depending on the constraints, the predicted arrival 
time can be found analytically or as a solution of a 
nonlinear equation. 
 
 KINEMATICS CONSTRAINTS 
The following motion generation problem can be 
formulated (with [ ]fTt ,0∈ ) 
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≤≤

aa

vvts

T f

eq 37 

Depending on the degree of the chosen polynomial, 
we have different expressions: 
 
 First order 

3,..,1

,max
maxmax

=−=−=









=

jAddA

A
v
A

T

jijfijfjd

d
f

j
σσ

ω

σ

σ
eq 38 

 
 

Third order 














=

maxmaxmaxmax
.
6

,
6

,
2
3

,
2
3

max
ωω

σσ A
a

AA
v
A

T dd
f

eq 39 

 
Fifth order 














=

maxmaxmaxmax
.

3

10
,

3
10

,
8
15

,
8
15

max
ωω

σσ A
a
AA

v
A

T dd
f

eq 40 

 
  DYNAMICS CONSTRAINTS 
The following motion generation problem can be 
formulated : 

maxmax

maxmax

)()(

.

min

ττ

ωω

≤≤

≤≤

ufuf

vvts

T f

eq 41 

where 

( )

( ) ( ).*
.

.
.

)(

βωωωτ

ω

+++=

++=

MvvxJJu

bxMvvMuf
 

Depending on the degree of the chosen polynomial, 
we have different expressions. 
 
Let’s suppose first that b(.)=β(.)=0. 
 
 First order polynomial 

3,1maxmaxmaxmax

,,,max
=











=

i

dii
f

A
v
A

f
T

ii
ωτ

ηϕ σ  

     eq 42 

where 
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∑

∑

=

=

=

=

−+−=

−+−=

−+−=

−=

−=

−=

3

1

3

1

2123

3113112

23231

123

3112

231

2121

33

3232

21

3

32

j
iji

j
diji

dd

dd

dd

j

j

AJJ

AMm

mAmAJAJA

mAmAJAJA

mAmAJAJA

mAmA

mAmA

mAmA

σ

σσ

σσ

σσ

σσ

σσ

σσ

η

η

η

ϕ

ϕ

ϕ

eq 43 

 
Third order polynomial 

3,1maxmaxmax

maxmaxmax

.
6

,
6

,
2
3

,
2
3

,,

max

=






















=

i

d

dii

f A
a

AA

v
A

f
T

ii

ωω

τ
ηϕ

σσ

 

    eq 44 

where  
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) (
( ) ( ) ( )1212

2
3

2
3333

311311
2

2
2
2222

2323
2

1
2

1111

12
2

3
2
3333

311
2

2
2
2222

23
2

1
2
1111

2121

33

3232

21

3

32

136216

136216

136216

136216

136216

136216

mAmAJAJAm

mAmAJAJAm

mAmAJAJAm

mAmAm

mAmAm

mAmAm

dd

dd

dd

−+−Ψ−Ψ+Ψ−=

−+−Ψ−Ψ+Ψ−=

−+−Ψ−Ψ+Ψ−=

−Ξ−Ξ+Ξ−=

−Ξ−Ξ+Ξ−=

−Ξ−Ξ+Ξ−=

σσ

σσ

σσ

σσ

σσ

σσ

η

η

η

ϕ

ϕ

ϕ

 

)

The initial and final positions are respectively 
( )Td 000)0( =

0
 ; , for 

a normalized time 
( )Td 12108)1( =

1≤≤ t . End positions on SO(3) 
are given in exponential coordinates. The initial 
condition is ( )T000)0( =σ which corresponds 

to the body frame { }M being parallel with the initial 

frame { }F at t=0.  with the coefficients Ξi and Ψi easily calculated by 
the software MAPLE. They depend on the dynamic 
model parameters and the difference between the 
initial and final position and orientation. 
 

Fifth order polynomial  
A 7th order polynomial equation must be solved 
numerically. The polynomial coefficients are 
calculated using Maple. 
 
Let’s suppose now  that b(.)≠0  and β(.)≠0. 
 
 First order polynomial 
A second order polynomial equation must be solved 
for each of the three forces and each of the three 
torques limitations. 
For example, considering the limitation on the first 
force gives the following equation: 

001
2

2 =++ aTaTa ff
eq 45 

 

)( 23322 mma σσ −=  
111 dV ADa = ,   

( )

( )
1max

31

2
2

31

31

22
0

cos1

sin

FArctgBmg

ArctgBmga

f

f

f

f

−



























−

−

−
















−
=

σσ
σσ

σ
σσ

σσ
σσ

σ
σ

eq 46 

Five other equations have to be solved in the same 
way. Then the greatest value of all the 6 proposed 
times will be taken as the predicted arrival time T . f

 
Third order polynomial 

 
For the third and the fifth order polynomials, the 
problem is solved numerically. We are looking 
forward for a simple solution to be implemented. 
 

SIMULATION RESULTS 
 
The platform used for simulations is the AS200 
airship (by Airspeed airships). It is a remotely piloted 
airship designed for remote sensing. It is a non rigid 
6mlong, 1.4m diameter and 8.6m3 volume airship. In 
this paper, it is supposed to be fully actuated.  
 

SINGULAR VALUE DECOMPOSITION  
 

 
CHOICE OF THE METRIC 

 
First, let’s show the importance of the choice of the 

metric. The final condition 
T







=

236
)1( πππσ  

corresponds to a rotation of 
6
14π about the unit 

vector 
T









14
3

14
2

14
1 . For each figure, there 

are four subplots: the first one shows the three 
components of the exponential coordinates σ. The 
second one the components of the position vector, the 
third one the path in space. And finally the fourth one 
presents the linear velocity: 
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222
0 wvuV ++=    eq 47 

For a minimal jerk trajectory, with zero initial and 
final velocities and accelerations, four different 
simulations are presented  :  
A : First metric W1=α I (eq13) 
α=3 
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Figure 1 

 
α=10 
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Figure 2 

 
B : Second metric W2 (inertia matrix) eq 8 
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Figure 3 

C : Third metric W2 (eq 7) 
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Figure 4 

The chosen metric has obviously an effect on the 
variation of the exponential coordinates σ. 
 

MINIMUM ENERGY, ACCELERATION AND 
JERK CURVES. 

 
The first metric is chosen for these simulations. The 
predicted arrival time is T . The final 

condition 

10=f
T



π



=

4510
)1( ππσ  corresponds to a 

rotation of 
20

5π3 about the unit vector 

T





5

5




353

4
53

2 . For each type of analytical 

trajectories, three figures are related: 
Geodesic: Figure 5, Figure 6, Figure 7. 
Minimal acceleration: Figure 8, Figure 9, Figure 10. 
Minimal jerk: Figure 11, Figure 12, Figure 13. 
For each figure (5, 8, 11), there are four subplots: the 
first one shows the three components of the 
exponential coordinates σ. The second one the 
components of the position vector, the third one the 
path in space. And finally the fourth one presents the 
linear velocity. 
For each figure (6, 9, 12), there are four subplots: 
angular velocity and acceleration then linear velocity 
and acceleration.  
For each figure (7, 10, 13), there are six subplots: the 
three first for the 3 components of the forces and the 
last three for the 3 components of the torques. 
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Geodesic 
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Figure 5 
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Figure 6 
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Figure 7 

 
 
 
 
 
 
 
 
 
 

 
minimal acceleration 
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Figure 8 
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Figure 9 
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Figure 10 
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minimal jerk 
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Figure 11 
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Figure 12 
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Figure 13 

 
POLYNOMIAL INTERPOLATION  

 
In this paragraph, due to the lack of space, we  
present only simulation results for the third order 
polynomial interpolation considering that b(.)≠0  and 

β(.)≠0. The respective limitations on the linear and 
angular velocities  and accelerations are : 

2
max

2
max

maxmax

/5
.

/6.2
.

/5.1/4.13

sradsmv

sradsmv

==

==

ω

ω
 

While the limitations on the forces and torques are : 
( )
( )Nm

NF
200200100
100100100

max

max

=Γ
=  

The predicted arrival time is T  sf 6.15=
Figures 14, 15 and 16 present the simulation results 
for the same initial and final positions and 
orientations than above.  
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Figure 14 
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Figure 15 
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Figure 16 

 
 
 

CONCLUSIONS 
 
Once the path has been calculated in the Earth fixed 
frame, motion must be investigated and reference 
trajectories determined taking into account actuators 
constraints. Trajectory design can be formulated as a 
curve describing the time history of the vehicle 
displacement. The role of the trajectory generator is 
to generate a feasible time trajectory for the UAV. 
Feasible means that the trajectory fulfills the 
dynamics and actuators constraints. The challenge is 
to determine the best predicted arrival time in light 
of the capabilities of the vehicle.  
A generalization of this work is trajectory generation 
for underactuated systems. 
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