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Abstract

A blimp is a small airship that has no metal framework and collapses when deflated.

In the first part of this paper, kinematics and dynamics modelling of small autonomous

non rigid airships is presented. Euler angles and parameters are used in the formulation

of this model. In the second part of the paper, path planning is introduced using

helices with vertical axes. Motion generation for trim trajectories (helices with constant

curvature and torsion) is presented. Then path planning using helices with quadratic

curvature and torsion is described, and motion generation on these helices expressed.

This motion generation takes into account the dynamics model presented in the first

part.

Key-words: Autonomous Airship, path planning, motion generation, Under-actuated
systems.

1 Introduction

Unmanned aerial vehicles are a new focus of research, because of their important application
potential. They can be divided into three different types: reduced scale fixed wing vehicles
(airplanes), rotary wing aircraft (helicopter) or lighter than air (airships). Lighter than
air vehicles suit a wide range of applications, ranging from advertising, aerial photography
and survey work tasks. They are safe, cost-effective, durable, environmentally benign and
simple to operate. Airships offer the advantage of quiet hover with noise levels much lower
than helicopters. Unmanned remotely-operated airships have already proved themselves as
camera and TV platforms and for specialized scientific tasks. An actual trend is toward
autonomous airships.
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What makes a vehicle lighter than air is the fact that it uses a lifting gas (i.e. helium or
hot air) in order to be lighter than the surrounding air. The principle of Archimedes applies
in the air as well as under water. Airships are powered and have some means of controlling
their direction. Nowadays non rigid airships or blimps are the most common form. They
are basically large gas balloons. Their shape is maintained by their internal overpressure.
The most common form of a dirigible is an ellipsoid. It is an aerodynamical profile with
good resistance to aerostatics pressures. The only solid parts are the gondola, the set of
propeller (a pair of propeller mounted at the gondola and a tail rotor with horizontal axis
of rotation) and the tail fins. The membrane material is normally a flexible gas-tight and
weather proofed fabric. The envelope holds the helium that makes the blimp lighter than
air. Air ballonets, usually two in number, are installed within the gas space and connected
to an external air supply pressurized to the required differential above atmospheric. In
addition to the lift provided by helium, airships derive aerodynamic lift from the shape of
the envelope as it moves through the air. The conventional airship is essentially a low speed
vehicle with the power requirement being approximately proportional to the cube of the
airspeed. Endurance is one of the primary characteristics of the airship.

The first objective of this paper is to present both kinematics and dynamics models of
a small autonomous blimp. This study discusses the motion in 6 degrees of freedom since
6 independent coordinates are necessary to determine the position and orientation of this
vehicle. For kinematics, both Euler angles and parameters representations are discussed
because the first one is used in dynamics modelling while the second one is used in path
planning. For dynamics, a mathematical description of a dirigible flight dynamics must
contain the necessary information about aerodynamic, structural and other internal dynamic
effects (engine, actuation). The blimp is a member of the family of under-actuated systems
because it has fewer inputs than degrees of freedom. In some studies such as [FOS96,
HYG00, KHO99, ZHA99, ZIA98], motion is referenced to a system of orthogonal body axes
fixed in the airship, with the origin at the center of volume assumed to coincide with the
gross center of buoyancy. The model used was written originally for a buoyant underwater
vehicle [FOS96, ZIA98]. It was modified later to take into account the specificity of the
airship [HYG00, KHO99, ZHA99]. The term buoyancy is used in hydrodynamics while the
term static lift is used in aerodynamics. The center of buoyancy is the center of gravity of
the displaced fluid. It is the point through which the static lift acts. The center of gravity
is the point through which the weight of the object is acting.
In this paper, the origin of the body fixed frame is the center of gravity while in the cited
works, it is located in the center of volume.

The second objective of this paper is to generate a desired flight path to be followed by
the airship. A mission starts with take-off from the platform where the mast that holds the
mooring device of the blimp is mounted. Typically, flight operation modes can be defined
as : take-off, cruise, turn, landing, hover... [BES01, CAM99, PAI99, ZHA99]. After the user
has defined the goal tasks, the path generator then determines a path for the vehicle that
is a trajectory in space. In the first instance, the trajectories considered are trimming or
equilibrium trajectories. The general condition for trim requires that the rate of change of
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the magnitude of the velocity vector is identically zero, in the body fixed frame. Then, the
generalized vertical axis helices are presented. Their characteristic is that their curvature and
torsion may have a quadratic variation versus the curvilinear abscissa. We deal with directed
curves for path planning. The particular case where the rotational axis n is parallel to the
vector T of the Frenet Serret frame is studied. Finally the proposed motion generation
is presented for a vehicle moving on this path. The problem of trajectory generation is
formulated as an optimization problem. This motion generation takes into account in the
first instance constraints on velocity and acceleration then more realistic constraints on the
two types of inputs : thrusts and tilt angle. The minimum time problem is formulated then
solved numerically.

The paper is organized as follows. Modelling is the subject of the second section while the
trim trajectories are studied in section three. In section four, path planning using vertical
axis helices with quadratic curvature and torsion and motion generation on these helices are
presented. Finally, some conclusions and perspectives are presented in the last section.

2 Airship dynamic modelling

2.1 Kinematics

A general spatial displacement of a rigid body consists of a finite rotation about a spatial axis
and a finite translation along some vector. The rotational and translational axes in general
need not be related to each other. It is often easier to describe a spatial displacement as
a combination of a rotation and a translation motions, where the two axes are not related.
However, the combined effect of the two partial transformations (i.e rotation, translation
about their respective axes) can be expressed as an equivalent unique screw displacement,
where the rotational and translational axes coincide. The concept of a screw thus represents
an ideal mathematical tool to analyze spatial transformation [ZEF99]. The finite rotation
of a rigid body does not obey to the laws of vector addition (in particular commutativity)
and as a result the angular velocity of the body cannot be integrated to give the attitude
of the body. There are many ways to describe finite rotations. Direction cosines, Rodrigues
- Hamilton’s (quaternions) variables [BES93, CHE96, FOS96], Euler parameters [WEN91],
Euler angles [BES00], can serve as examples. Some of these groups of variables are very
close to each other in their nature [ZEF99]. The usual minimal representation of orientation
is given by a set of three Euler angles. Assembled with the three position coordinates allow
the description of the situation of a rigid body. A (3× 3) direction cosine matrix (of Euler
rotations) is used to describe the orientation of the body (achieved by 3 successive rotations)
with respect to some fixed frame reference.
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2.2 Euler angles

Two reference frames are considered in the derivation of the kinematics and dynamics equa-
tions of motion. These are the Earth fixed frame Rf and the body fixed frame Rm (figure
1). The position and orientation of the vehicle should be described relative to the inertial
reference frame while the linear and angular velocities of the vehicle should be expressed in
the body-fixed coordinate system. This formulation is used for underwater vehicles as well
[FOS96, ZIA98]. The origin C of Rm coincides with the center of gravity of the vehicle. Its
axes (xc, yc, zc) are the principal axes of symmetry when available. They must form a right
handed orthogonal normed frame. The position of the vehicle C in Rf can be described by:

η1 =


 x

y

z


 (1)

While the orientation is given by

η2 =


 φ

θ

ψ


 (2)

with φ Roll, θ pitch and ψ Yaw angles (aeronautical angles). The relationship between
the Euler angles used and the rotation matrix is1

R =


 cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ sφcθ cφcθ


 . (3)

R ∈ SO3 denote the orthogonal rotation matrix that specifies the orientation of the
airship frame relative to the inertial reference frame in inertial reference frame coordinates.
SO3 is the special orthogonal group of order 3 which is represented by the set of all (3× 3)
orthogonal rotation matrices that characteristics are :

RTR = I3, and det(R) = 1 (4)

where I3 represents the (3× 3) identity matrix.

This description is valid in the region −π
2 < θ < π

2 . A singularity of this transformation
exists for:

θ =
π

2
+ kπ, k ∈ Z

If we use the manipulators formulation, at each instant, the configuration (position
and orientation) of the airship can be described by an homogeneous transformation matrix

1The following shorthand notation for trigonometric function is used:

cβ := cos(β), sβ := sin(β), tβ := tan(β).
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corresponding to the displacement from frame Rf to frame Rm. The set of all such matrices
is called SE3 [SEL96], the special Euclidean group of rigid-body transformations in three
dimensions.

SE3 =

{
A| A =

(
R η1

03 1

)
, R ∈ SO3 ⊂ R3×3, η1 ∈ R3

}
(5)

SE3 is a Lie group. R3 represents the set of (3 × 1) real vectors and R3×3 the set of
(3× 3) real matrices.

Let’s introduce V as the linear velocity of the origin C expressed in the body fixed frame
Rm and Ω as the angular velocity expressed in Rm.

V =


 u

v

w


 , Ω =


 p

q

r




The kinematics of the airship can be expressed in the following way :(
η̇1

η̇2

)
=

(
R 03

03 J(η2)

) (
V

Ω

)
(6)

Where

J(η2) =
1
cθ


 cθ sφsθ cφsθ

0 cφcθ −sφcθ
0 sφ cφ


 (7)

If we use the metric formulation, the tangent space of SE3, denoted by se3 is given by :

se3 =

{(
sk(Ω) V

0 0

)
, sk(Ω) ∈ R3×3, V ∈ R3

}
(8)

where sk(Ω) represents the skew-symmetric matrix of the vector Ω

sk(Ω) =


 0 −r q

r 0 −p
−q p 0




This matrix has the property that for an arbitrary vector U ∈ R3

sk(Ω)U = Ω× U (9)

×: represents the cross vector product in R3. This tangent space se3 has the structure
of a Lie algebra.

There is, however, a geometric singularity (singularity of the analytical jacobian) in the
Euler representation. This problem can be avoided by using a 4 parameter description of the
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orientation, known as quaternion, which can be used to describe all possible orientations.
The quaternion approach uses Euler theorem which states that any rotation of a rigid body
can be described by a single rotation about a fixed axis. The advantage of using quaternions
is their representation and computational efficiency, apart avoiding singularities.

2.2.1 Euler parameters

The Euler parameters are unit quaternions and are represented by a normalized vector of
4 real numbers. They are one of the minimal set of parameters capable of defining a non
singular mapping between the parameters and their corresponding rotation matrix. Taking
the vector part of a unit quaternion and normalizing it, we can find the rotational axis
and from the scalar part, we can obtain the angle of rotation. The Euler parameters are
expressed by the rotation axis n and the rotation angle δ about the axis as follows :

ε =

(
cos( δ2 )
sin( δ2 )n

)
=

(
e0

e

)
=




e0

e1

e2

e3


 =




cos( δ2 )
sin( δ2 )nx

sin( δ2 )ny

sin( δ2 )nz


 , 0 ≤ δ ≤ 2π (10)

The orientation matrix R is given by:

R =


 1− 2(e22 + e23) 2(e1e2 − e3e0) 2(e1e3 + e2e0)

2(e1e2 + e3e0) 1− 2(e21 + e23) 2(e2e3 − e1e0)
2(e1e3 − e2e0) 2(e2e3 + e1e0) 1− 2(e21 + e22)


 (11)

The configuration space R3 × SO3 may be replaced by R3 × S3 where

S3 = {x ∈ R4| ||x||2 = 1}

is the unit sphere in R4 for the Euclidean norm ||.||2.

The associated kinematics differential equations of Euler parameters are given by :

ė =
1
2
(e0I3 + sk(e))Ω =

1
2
(Ω× e+ e0Ω)

ė0 =− 1
2
eTΩ (12)

and define a vector field on S3, the 3 sphere on R4.

The time derivative of Euler parameters can be determined at any configuration of the
body if the angular velocity is given. The kinematics of the airship can be expressed in the
following way: (

η̇

ε̇

)
=

(
R 03×3

04×3 J(ε)

) (
V

Ω

)
(13)
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Where

J(ε) =
1
2




−e1 −e2 −e3
e0 −e3 e2

e3 e0 −e1
−e2 e1 e0


 (14)

with
J(ε)TJ(ε) =

1
4
I3 (15)

In dynamic modelling, Euler parameters cannot be used in a Lagrangian approach since
in this representation, a configuration is defined by 7 parameters. In this paper, Euler angles
are used for dynamic modelling while Euler parameters are used for path planning.

2.3 Dynamics

In this section, analytic expressions for the forces and moments on the dirigible are derived.
It is advantageous to formulate the equations of motion in a body fixed frame to take
advantage of the vehicle’s geometrical properties. There are in general two approaches in
deriving equations of motion. One is to apply Newton’s law and Euler’s law which can give
some physical insight through the derivation. The other one is more complicated, it provides
the linkage between the classical framework and the Lagrangian or Hamiltonian framework.
In this paper, applying Newton’s laws of motion relating the applied forces and moments
to the resulting translational and rotational accelerations assembles the equations of motion
for the 6 degrees of freedom. The forces and moments are referred to a system of body-fixed
axes, centered at the blimp center of gravity. We will make in the sequel some simplifying
assumptions : the earth fixed reference frame is inertial, the gravitational field is constant,
the airship is supposed to be a rigid body, meaning that it is well inflated, the aero-elastic
effects are ignored, the density of air is supposed to be uniform, and the influence of gust is
considered as a continuous disturbance, ignoring its stochastic character [MIL73, TUR73].
The deformations are considered to be negligible. The buoyancy system lifetime will be
limited by a number of components and factors. Included is the corrosion of unprotected
airship skin, degradation of the airship skin due to thermal cycling and temperature exposure
and buoyant gas leakage. High temperature will increase permeability of the airship skin
and increase leakage. Introducing all these factors into the dynamic model would result in
very complicated partial differential equations.
Here, the dynamics model is defined as the set of ordinary differential equations relying the
situation of the vehicle in its position, velocity and acceleration to the control vector. The
translational part is separated from the rotational part. As the blimp displays a very large
volume, its virtual mass and inertia properties cannot be neglected. The dynamics model is
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expressed in the body fixed frame as:

Ẋ =− Ω×X + V

MV̇ =− Ω×MV − diag(Dv)V + (mg −B)RT ez + F1 + F2

Ṙ =Rsk(Ω)

IΩ̇ =− Ω× IΩ− diag(DΩ)Ω +
(
RT ez × B̄G

)
B − F1 × ¯P1G− F2 × ¯P2G (16)

where
X = RT η1 (17)

X represents the position in the body fixed frame.
m: is the mass of the airship, the propellers and actuators,
M : is the (3 × 3) mass matrix and includes both the airship’s actual mass as well as the
virtual mass elements associated with the dynamics of buoyant vehicles,
I: is the (3× 3) inertia matrix and includes both the airship’s actual inertia as well as the
virtual inertia elements associated with the dynamics of buoyant vehicles, with respect to
G,
diag(Dv): is a (3× 3) aerodynamic forces diagonal matrix,
diag(DΩ): is a (3× 3) aerodynamic moments diagonal matrix,
F1 and F2: Vectors of the propulsion forces,
ez = (0 0 1)T : is a unit vector,
B = ρ∆g: represents the magnitude of the buoyancy force. ∆ is the volume of the envelope,
ρ is the difference between the density of the ambient atmosphere ρair and the density of
the helium ρhelium in the envelope, g is the constant gravity acceleration.

¯PiG: represents the position of the ith propeller.
B̄G = (xB , yB , zB) represents the position of the center of buoyancy with respect to the
body fixed frame.
The terms Ω×MV and Ω× IΩ show the centrifugal and Coriolis components.

The radiation induced forces and moments can be identified as the sum of three compo-
nents [FOS96]:

• Added mass due to the inertia of the surrounding fluid,

• Radiation induced potential damping due the energy carried away by the wind,

• Restoring forces due to Archimedes (weight and buoyancy).

Added mass should be understood as pressure - induced forces and moments due to a
forced harmonic motion of the body which are proportional to the acceleration of the body.
In order to allow the vehicle to pass through the air, the fluid must move aside and then
close behind the vehicle. As a consequence, the fluid passage possesses kinetic that it would
lack if the vehicle was not in motion. The mass of the dirigible is assumed to be concentrated
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in the center of gravity

M =


 m−Xx −Xy −Xz

−Yx m− Yy −Yz

−Zx −Zy m− Zz


 (18)

where Xx., Yy. and Zz. are the virtual mass terms of X, Y , Z axes respectively.

I =


 Ix −Kx −Ixy −Ixz

−Iyx Iy −My −Iyz
−Izx −Izy Iz −Nz


 (19)

Kx, My and Nz are the virtual inertia terms of X, Y , Z about GX, GY and GZ axes
respectively.

The mass and inertia matrices are positive definite. We will assume that the added mass
coefficients are constant. They can be estimated from the inertia ratios and the airship
weight and dimension parameters.

The aerodynamic force can be resolved into two component forces, one parallel and the
other perpendicular to the direction of motion. Lift is the component of the aerodynamic
force perpendicular to the direction of motion and drag is the component opposite to the
direction of motion.

diag(Dv) =diag(−Xu −Xuu|u|, −Yv − Yvv|v|, −Zw − Zww|w|) (20)

diag(DΩ) =diag(−Lp − Lpp|p|, −Mq −Mqq|q|, −Nr −Nrr|r|) (21)

For a slow moving object in the air, we can assume a linear relationship between the speed
and the drag. The aerodynamic drag of an airship is high. For a typical airship in steady
axial flight, we consider that the total aerodynamic drag owes its origin to the bare hull.
Since both the gravitational force and the buoyancy force are static, they may be treated
together. The gravitational force vector is given by the difference between the airship weight
and the buoyancy acting upwards on it:

(mg −B)RT ez = (mg −B)


 −sθ

cθsφ

cθcφ




or (mg −B)RT ez = (mg −B)


 2(e1e3 − e2e0)

2(e2e3 + e1e0)
1− 2(e21 + e22)


 (22)

The gravitational and buoyant moments are given by:
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B
(
RT ez × B̄G

)
= B


 zBcθsφ − yBcθcφ

xBcθcφ + zBsθ

−yBsθ − xBcθsφ




or B
(
RT ez × B̄G

)
= B


 2zB(e2e3 + e1e0)− yB(1− 2(e21 + e22))

xB(1− 2(e21 + e22)) + zB(e1e3 − e2e0)
2yB(e1e3 − e2e0)− 2xB(e2e3 + e1e0)


 (23)

The relationship between the center of gravity and the center of buoyancy is an important
parameter. For the airship to remain statically level (aerodynamics and thrust effects are
ignored here), the center of gravity should be directly below the center of buoyancy. Any
horizontal offset will result in the airship adopting a pitch angle. The vertical separation
between these two centers affects the handling characteristics of the airship. The mutual
position could be changed using the ballonets.

2.4 Propulsion

Actuators provide the means for maneuvering the airship along its course. A blimp is
propelled by thrust. Propellers are designed to exert thrust to drive the airship forward.
The most popular propulsion system layout for pressurized non rigid airships is twin ducted
propellers mounted either side of the envelope bottom. Another one exists in the tail for
torque correction and attitude control. A propeller consists of a certain number of blades
rotating about an axis. Six blades per propeller are considered to be the minimum required
to produce smooth and continuous thrust without excessive turbulence and inter-blade flow
interference. Required power to keep a position against winds increases in proportion to
the wind velocity cubed. In aerostatics hovering (floating), its stability is mainly affected
by its center of lift in relation to the center of gravity. The blimp’s center of gravity can be
adjusted to obtain either stable, neutral or unstable conditions. Putting all weight on the
top would create a highly unstable blimp with a tendency to roll over in a stable position. In
aerodynamics flight, stability can be affected by fins and the general layout of the envelope.
Control inertia can be affected by weight distribution, dynamic (static) stability and control
power (leverage) available. The best way to obtain a well behaved and easy to control blimp
in real time is:

• to reduce control inertia by putting all weight as centered as possible (main concen-
tration close to the center of gravity).

• to increase control power, propellers should be far away from the center of gravity for
maximum leverage.

• to maximize stability around ’unwanted’ degrees of freedom (mainly the roll angle and
velocity), the propellers should be installed such that the ’unwanted ’ degrees are not
controlled.
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If the compensating thrust system is found to be impractical, or only partially effective,
the airship must move laterally. A blimp is an under-actuated system with two types of
control: forces generated by thrusters and angular inputs controlling the direction of the
thrusters ( µ is the tilt angle of the propellers) :

F1 =


 TM sinµ

0
TM cosµ


 , F2 =


 0

TT

0


 (24)

where TM and TT represent respectively the main and tail thrusters.

Thus in building the non linear six degrees of freedom mathematical model, the additional
following assumptions are made:

¯P1G =


 0

0
P 3

1


 , ¯P2G =


 −P 1

2

0
0




If we consider the plane XZ as a plane of symmetry, the mass and inertia matrices can be
written as :

M =


 m−Xx 0 −Xz

0 m− Yy 0
−Zx 0 m− Zz


 (25)

I =


 Ix −Kx 0 −Ixz

0 Iy −My 0
−Ixz 0 Iz −Nz


 (26)

If the center of gravity sits below the center of buoyancy, then B̄G = (0 0 zB)T .

The approach and landing, ground maneuvering and masting phases of flight demand
the highest degree of control precision. However, due to the airship’s susceptibility to gusts
and thermals, its inherent aerodynamic instability and the evaporation of aerodynamic con-
trol at low airspeeds, the control system must accomplish these tasks at a time when the
control over the airship is greatly reduced. The problems associated with gust sensitivity
and aerodynamic instability are fundamental to ellipsoidal airships. One of the current prin-
cipal challenge is the development of quiet, high efficiency propulsion systems. Any airship
designed to achieve near-autonomous mast-docking must have significant mass dedicated to
low speed handling. In order to estimate the performance of any airship, it is necessary to
estimate the cruise drag coefficient and propulsive efficiency. In general, the thruster force
and moment vector will be a complicated function depending on the vehicle linear and angu-
lar velocity and the control variables. However, under some assumptions, a linear form can
be proposed. In addition, most thruster systems are driven by small DC motors designed
for aerial operating conditions. Dynamics of the DC motor should also be included in the
dynamics.
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3 Trim Trajectories

The fundamentals of flight are in general : straight and level flight (maintenance of selected
altitude), ascents and descents, level turns, wind drift correction and ground reference ma-
neuvers. Trim is concerned with the ability to maintain flight equilibrium with controls
fixed. A trimmed flight condition is defined as one in which the rate of change (of magni-
tude) of the aircraft’s state vector is zero (in the body-fixed frame) and the resultant of the
applied forces and moments is zero. In a trimmed maneuver, the aircraft will be accelerating
under the action of non-zero resultant aerodynamic and gravitational forces and moments,
these effects will be balanced by effects such as centrifugal and gyroscopic inertial forces
and moments. The trim problem is generally formulated as a set of nonlinear algebraic
equations.

u̇ = v̇ = ẇ = ṗ = q̇ = ṙ = 0 (27)

Using Eqn’s 6 and 7, the angular velocity can be written as :

p = φ̇− ψ̇sinθ (28)

q = θ̇cosφ+ ψ̇sinφcosθ

r = −θ̇sinφ+ ψ̇cosφcosθ

Differentiating versus time and nullifying these derivatives, we obtain

p0 =− ψ̇0 sin θ0

q0 =ψ̇0 cos θ0 sinφ0

r0 =ψ̇0 cos θ0 cosφ0

(29)

with one of the solutions given by :


 φ̇ = 0

θ̇ = 0
ψ̇ = constant = ψ̇0


 (30)

Thus


 φ = constant = φ0

θ = constant = θ0

ψ = ψ̇0t


 (31)

Using Eqn 3, trimming trajectories are characterized by:
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ẋ =ax cos ψ̇0t+ bx sin ψ̇0t

ẏ =ay cos ψ̇0t+ by sin ψ̇0t

ż =ż0 = −sinθ0u0 + cosθ0sinφ0v0 + cosθ0cosφ0w0

where

ax =u0 cos θ0 + v0 sinφ0 sin θ0 + w0 cosφ0 sin θ0

by =ax

bx =− v0 cosφ0 + w0 sinφ0 (32)

ay =− bx

Integrating, we obtain

r(s) =


 x(s)

y(s)
z(s)


 (33)

with

x =
ax

ψ̇0

sin

(
ψ̇0

Ve
s

)
− bx

ψ̇0

cos

(
ψ̇0

Ve
s

)

y =− bx

ψ̇0

sin

(
ψ̇0

Ve
s

)
− ax

ψ̇0

cos

(
ψ̇0

Ve
s

)
(34)

z =
ż0
Ve

s

where s represents the curvilinear abscissa and we suppose a uniform motion so

s = Vet = t
√
u2

0 + v2
0 + w2

0 (35)

The trajectories represented by these equations are helices with constant curvature and tor-
sion (see figure 2). Figure 3 represents the projection of the helix onto the plane X − Y .
The most general trim condition resembles a spin mode. The spin axis is always directed
vertically in the trim. The trim condition can be a turning (about the vertical axis), descend-
ing or climbing (assuming constant air density and temperature), side-slipping maneuver at
constant speed. More conventional flight conditions such as hover, cruise, auto-rotation or
sustained turns are also trims. Motion generation allows to calculate the reference trajec-
tory to be given to the actuators. This reference trajectory definition takes into account the
manipulator dynamics.

3.1 Problem formulation

Our objective in this paragraph is to find a value for (u, v, w, ψ) such that an optimization
problem is solved where the objective function may be a mixed time-energy function.

13



Using the dynamic Eqn’s 16, 20, 21, 25 and 26, we obtain the following relations.
 Fx

Fy

Fz


 =


 TM sinµ

TT

TM cosµ




=


 (−Zxu+ (m− Zz)w)q − (m− Yy)vr − (Xu +Xuu|u|)u

((m−Xx)u−Xzw)r − (−Zxu+ (m− Zz)w)p− (Yv + Yvv|v|)v
(m− Yy)vp− ((m−Xx)u−Xzw)q − (Zw + Zww|w|)w


 (36)


 Mx

My

Mz


 =


 0

−TMP 3
1 sinµ

TTP
1
2




= −


 (−Ixzp+ (Iz +Nz)r)q − (Iy +My)rq − (Lp + Lpp|p|)p−BzBcθsφ

((Ix +Kx)p− Ixzr)r − (−Ixzp+ (Iz +Nz)r)p− (Mq +Mqq|q|)q −BzBsθ

(Iy +My)pq − ((Ix +Kx)p− Ixzr)q − (Nr +Nrr|r|)r




From these 6 relations, we can derive 3 constraints:

Mx(u, v, w, ψ̇) = 0 (37)

My(u, v, w, ψ̇) = P 3
1Fx(u, v, w, ψ̇) (38)

Mz(u, v, w, ψ̇) = −P 1
2Fy(u, v, w, ψ̇) (39)

The overall problem consists now in determining some variables (u, v, w, ψ̇) that mini-
mize the specified objective function: mixed time-energy subject to three equality constraints
(dynamics) and inequality constraints (actuators), the weighting parameter being λ. The
thrusts TM and TT are bounded as well as the angle µ.

min
∫ Tf

0

(λ+ (1− λ)E) dτ (40)

subject to Mx = 0 My = P 3
1Fx Mz = −P 1

2Fy

|TM | ≤ TMmax
|TT | ≤ TTmax

µmin ≤ µ ≤ µmax (41)

where
T 2
M = F 2

x + F 2
z , TT = Fy, µ = atan

Fx

Fz
(42)

The total time can be expressed as:

Tf =
zf − zi

−usθ + vcθsφ + wcθcφ
(43)

while the energy is given by:

E =
∫ Tf

0

(
T 2
M (t) + T 2

T (t)
)
dt (44)

14



zf and zi being respectively the final and initial altitude.

A proposed resolution method is introduced in the following section.

3.2 Resolution of the minimum time problem

Optimization theory gives a solution to the minimum time problem. It is located on the
boundary of the admissible set, i.e. the airship moves using maximum actuator capabilities.
The resolution will be organized as follows. First, this problem will be solved assuming that
the equality constraints are fulfilled and each inequality constraint is saturated. Then the
largest value of all the computed times will be taken as the predicted arrival time.
In the first instance, we solve the three equality constraints Eqn’s 45, 47-48, this allows us to
obtain (u, v, w, ψ̇) . Using Eqn 37, we find the following second order polynomial equation:

aψ̇2 + bψ̇|ψ̇|+ cψ̇ + d = 0 (45)

where

a =Ixzsθcθsφ + (Iz +Nz − Iy −My)c2θsφcφ

b =Lpp|sθ|sθ (46)

c =Lpsθ

d =−BzBcθsφ

ψ̇ can then be found analytically.
From Eqn.’s 39 , we can deduce

w =
Mz − P 1

2 ((m−Xx)ur + Zxup− (Yv + Yvv|v|)v)
P 1

2 (−Xzr − (m− Zz)p)
(47)

From Eqn 38, we find a relationship between u and v.

a′u+ b′|u|u+ c′v + d′|v|v + e′ = 0 (48)

where

a′ =P 3
1P

1
2 (Xzr + (m− Zz)p)(Zxq +Xu)− P 3

1P
1
2 (m− Zz)((m−Xx)r + Zxp)q

b′ =P 3
1Xuu(Xzr + (m− Zz)p)P 1

2

c′ =P 3
1 (m− Yy)r(Xzr + (m− Zz)p)P 1

2 + P 3
1 (m− Zz)qYvP

1
2

d′ =P 3
1 (m− Zx)qYvvP

1
2

e′ =P 3
1 (m− Zz)qMz −My(Xzr + (m− Zz)p)P 1

2

Let’s deal now with inequality constraints. Assuming that each constraint can be satu-
rated, we have to solve a set of five nonlinear equations.

T 2
M = T 2

Mmax
, TT = ±TTmax

, µ = µmin, µ = µmax (49)
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Solving TT = ±TTmax
, µ = µmin, µ = µmax lead to equations of the form;

2∑
i,j,k,l=0

Cijklu
ivj |u|k|v|l = 0

Solving T 2
M = T 2

Mmax
lead to an equation of the form;

4∑
i,j,k,l=0

Dijklu
ivj |u|k|v|l = 0

where the coefficients Cijkl and Dijkl are constants depending on the parameters of the
dynamic model and the initial and final configurations. We will take as solution of this
optimization problem, the smallest value of u and v satisfying the equality constraints and
minimizing the objective function.

4 An example of generalized helices

4.1 Vertical axis helix

Arc length parameterization of a curve describing the path of a rigid body in the space is
used to derive the equations of the motion of the system. We will use the Frenet - Serret
formulation.

T (s) =
dr/dβ

|dr/dβ| ,
dT

ds
= κN(s),

dN

ds
= τB(s)− κT, B(s) = T (s)×N(s),

dB

ds
= −τN(s)

(50)

The curvature κ(s) measures how quickly the curve is pulling away from the tangent.
The torsion τ(s) measures how quickly the curve is pulling out of the osculating plane (that
is the plane defined by the normal N(s) and the tangent T (s)). (T, N, B) are three unitary
orthogonal vectors, forming the so called Frenet - Serret frame. In the trim helix presented
in the previous paragraph, both the curvature and the torsion are constant. We propose as
a generalization of this helix, helices with quadratic (or linear) curvature and torsion, such
that

r =


 a cos(β(s))

a sin(β(s))
bβ(s)


 (51)

with
β(s) = α3s

3 + α2s
2 + α1s+ α0 (52)

and the curvature and torsion are respectively given by:

κ(s) =
a√

a2 + b2
(3α3s

2 + 2α2s+ α1)

τ(s) =
b√

a2 + b2
(3α3s

2 + 2α2s+ α1) (53)
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Given any two continuous functions κ and τ , there exists a unit speed curve that has these
functions as its curvature and torsion. The Frenet Serret frame is given by:

T (s) =
1√

a2 + b2


 −a sin(β(s))

a cos(β(s))
b


 , N(s) =


 − cos(β(s))

− sin(β(s))
0


 ,

B(s) =
1√

a2 + b2


 b sin(β(s))

−b cos(β(s))
a




(54)

In the following subsection, we consider the particular case where the vector T of the Frenet
Serret frame and the orientational axis n are the same, using the representation of the Euler
parameters.

4.2 Path planning with vertical axis helices

The following hypotheses are made.The representation by Euler parameters is used. Let two
postures initial PT

i = (rxi
ryi

rzi
e0i

e1i
e2i

e3i
) and final PT

f = (rxf
ryf

rzf
e0f

e1f
e2f

e3f
).

Smooth trajectories are preferred because rolling motion is often not controlled in an
airship and large vibrations could be generated by discontinuous curvature or torsion. We
are looking for the smoothest directed path joining a given pair (Pi, Pf ) of configurations,
such that (rxi

ryi
rzi

) �= (rxf
ryf

rzf
). A directed path segment is said to join Pi and Pf if

their end points are (rxi
ryi

rzi
) and (rxf

ryf
rzf

) and the tangential orientation at the end
points are (e0i

e1i
e2i

e3i
) and (e0f

e1f
e2f

e3f
). An helix defined by Eqn.

r =


 a(s) cos(β(s))

a(s) sin(β(s))
b(s)β(s)


 (55)

has a vertical axis if the curvature and the torsion are proportional in each point

κ(s)
τ(s)

= const. ∀s ∈ R+ (56)

Proposition 4.1 Pi (or Pf ) belongs to a vertical axis helix Eqn. 51, if

rzi
= b.atan

ryi

rxi

where a =
√
r2
xi
+ r2

yi
and b = anzi√

n2
xi

+n2
yi

Proof In the particular case studied in this paper, the configuration is expressed by 7
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elements such that

P (s) =




a cos(β(s))
a sin(β(s))

bβ(s)
cos( δ2 )

−a√
a2+b2

sin( δ2 ) sin(β(s))
a√

a2+b2
sin( δ2 ) cos(β(s))

sin( δ2 )
b√

a2+b2




=




rx

ry

rz

cos( δ2 )
sin( δ2 )nx

sin( δ2 )ny

sin( δ2 )nz




This proposition can be demonstrated with straightforward calculations.

If there exist s1 and s2 such that κ(s1) = κ(s2) = 0 or τ(s1) = τ(s2) = 0 with s1 < s2,
the points P (s1) and P (s2) on the vertical axis helix are inflection points where the sign of
the curvature (or the torsion) changes. The best way is to take κ(s) = τ(s) = 0 for Pi and
Pf . �

Proposition 4.2 Let (Pi, Pf ) be a pair belonging to a same helix. Let L be the length of
the helix

L = (βf − βi)
√
a2 + b2, with βi =

rzi

b
and βf =

rzf

b

then the curvature κ, the torsion τ and the angle β of the portion of the vertical axis
helix are given by:

κ(s) =
6a√

a2 + b2
βf − βi
L3

s(L− s), τ(s) =
6b√

a2 + b2
βf − βi
L3

s(L− s)

and
β(s) =

βf − βi
L3

s2(−2s+ 3L) + βi,

Proof Let’s use initial conditions for β and the curvature (or equivalently the torsion)

β(s) = α3s
3 + α2s

2 + α1s+ α0 (57)

and
κ(s) =

a√
a2 + b2

(3α3s
2 + 2α2s+ α1) = 0 for s = 0; s = L

Thus, we find four linear equations in four unknowns and the resolution gives:

α0 = βi α1 = 0 α2 = 3
βf − βi
L2

α3 = −2βf − βi
L3

To compute the length, the following relationship has been used :

L =
∫ Pf

Pi

ds =
∫ Pf

Pi

√
dx2 + dy2 + dz2 =

∫ βf

βi

√
a2 + b2dβ =

√
a2 + b2(βf − βi)

�
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Once the path has been calculated in the Earth fixed frame, motion on this helix must be
investigated and reference trajectories determined taking into account actuators constraints.
To make use of the dynamic model, the path should be transformed first from the Earth fixed
frame to the body fixed frame (as the dynamic model is expressed in this frame). Trajectory
design can be formulated as an optimization problem. A trajectory is defined as a curve
describing the time history of the vehicle displacement. Automated airships must follow a
predetermined trajectory such as polynomial functions, trapezoidal profiles and sinusoidal
curves, in analogy with terrestrial vehicles. The problem of transferring the vehicle, initially
at rest from an arbitrary initial configuration to a desired target configuration also at rest,
in minimum time is formulated as an optimal control problem.

4.3 Motion generation

4.3.1 Kinematics constraints

The minimum-time motion generation is solved in this paragraph, taking as feasible limits,
purely kinematics constraints on the velocity and acceleration. Often, the structure of the
minimum time problem requires that at least one of the actuators is always in saturation,
whereas the others adjust their outputs so that constraints on motion are not violated
while enabling the vehicle to reach its final desired configuration. Although these results
are important theoretically, they are not applicable directly. From an user’s point of view,
it would be preferable to have a suboptimal but simpler solution to implement. For this
purpose, we have chosen, a priori, a polynomial trajectory that coefficients are optimized to
get a continuous minimum time motion.
If both velocity ṡ and acceleration s̈ are bounded respectively by ṡmax and s̈max, we can
propose a third order polynomial variation of s versus t :

s = δ3t
3 + δ2t

2 + δ1t+ δ0 (58)

If we assume that both initial and final configurations are at rest :

s =
L

T 3
f

t2(−2t+ 3Tf ) (59)

Differentiating, the maximum value for the velocity is : ṡmax = 3
2

L
Tf

while the maximum
value for the acceleration is given by : s̈max = 6 L

T 2
f

We can propose the following optimization problem :

min Tf

subject to |ṡ| ≤ ṡmax |s̈| ≤ s̈max (60)

The classical solution is : Tf = max( 3
2

L
ṡmax

,
√
6 L
s̈max

)
In this way, motion generation is well defined and the reference trajectories as well as the
path are easily determined.
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4.3.2 Dynamics constraints

A constant bound on the acceleration must represent the global least upper bound of all
operations conditions. This implies that the full capabilities of the actuators cannot be
utilized if this conventional approach is taken. The efficiency of the autonomous blimp can
be increased by considering the dynamics at the motion generation stage.
More realistically, than for the case of kinematics constraints assuming the main and tail
thrusts and the tilt angle are bounded, a minimum time cost criterion is considered ;

min Tf

subject to |TM | ≤ TMmax
|TT | ≤ TTmax

µmin ≤ µ ≤ µmax (61)

Using Eqn(16), we find the following relations.

F1 + F2 = MV̇ +Ω×MV + diag(DV )V −RT eZ(mg −B) =


 Fx(s, ṡ)

Fy(s, ṡ)
Fz(s, ṡ)


 (62)

−F1×P1G−F2×P2G = IΩ̇+Ω×IΩ+diag(DΩ)−
(
RT ez ×BG

)
B =


 Mx(s, ṡ)

My(s, ṡ)
Mz(s, ṡ)


 (63)

Fx, Fy, Fz, Mx, My, Mz depend on mass, inertia, aerodynamic parameters and desired path
curvilinear abscissa s and its derivatives.
The following relationships can thus be derived, as in the previous paragraph;

Mx (s, ṡ) = 0

My (s, ṡ) = P 3
1Fx (s, ṡ)

Mz (s, ṡ) = −P 1
2Fy (s, ṡ)

(64)

and
T 2
M =F 2

x + F 2
z

TT =Fy

µ =atan
(
Fx

Fz

) (65)

These three relations (65) introduce three equality constraints. The exact solution of
this optimal problem without assuming that trajectories are polynomial is very difficult to
obtain.
Assuming as before that both initial and final configurations are at rest (four conditions)
and considering the three equality constraints, lead us to propose a sixth order polynomial
variation of s versus t :

s = α6t
6 + α5t

5 + α4t
4 + α3t

3 + α2t
2 + α1t+ α0 (66)
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with
L = α6T

6
f + α5T

5
f + α4T

4
f + α3T

3
f + α2T

2
f

0 = 6α6T
5
f + 5α5T

4
f + 4α4T

3
f + 3α3T

2
f + 2α2Tf

(67)

To solve the optimization problem, the equality constraints are first considered. Three more
non linear relations can be found solving Eqn (65). Then, the inequality constraints are
supposed to be saturated so five equations have to be solved .

F 2
x + F 2

z = T 2
Mmax

Fy = ±TTmax

atan

(
Fx

Fz

)
= µmin and atan

(
Fx

Fz

)
= µmax

(68)

The solution to be kept is the largest one which respect every constraint. Due to the strong
non linearities, the resolution has to be done numerically.

5 SIMULATION RESULTS

The lighter than air platform used for simulations is the AS200 by Airspeed Airships. It
is a remotely piloted airship designed for remote sensing. It is a non rigid 6m long, 1.4m
diameter and 8.6 m3 volume airship equipped with two vectorable engines on the sides of
the gondola and 4 control surfaces at the stern. The four stabilizers are externally braced on
the full and rudder movement is provided by direct linkage to the servos. Envelope pressure
is maintained by air feed from the propellers into the two ballonets located inside the central
portion of the hull. These ballonets are self regulating and can be feed from either engine.
The engines are standard model aircraft type units. The propellers can be rotated through
120 degrees. During flight the rudder and elevator are used for all movements in pitch and
yaw. In addition, the trim function can be used to alter the attitude of the airship in order to
obtain level flight or to fly with a positive or negative pitch angle. Rudder and elevator can
be moved from -25 to +25 degrees. The maximum velocity is 13m/s and the maximal height
is 200m. Climb or dive angles should not exceed 30 degrees, particularly at full throttle.
We present an example of a generalized helix joining two configurations in space.

Pi =




√
2√
2

−2.3
0.866
0
0.5
0.5




Pf =




0
5

3.75
0.866
−0.320
−0.129
0.353




from the path planning, we find :
a = 1.927; b = 1.927; L = 8.56m
Figure 4 presents this generalized helix with a vertical axis where the curvature and the
torsion have a quadratic variation versus s, while figures 5 and 6 present respectively the
angle β and the curvature versus the curvilinear abscissa s.
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5.1 Kinematics constraints

The values of the limitations on velocity and acceleration are the following :
ṡmax = 10m/s s̈max = 10m/s2

From the motion generation, we find
Tf = 7.16s
Figure 7 presents the three forces F respectively in the x, y and z directions. Figure 8 and
figure 9 show respectively the linear velocity (u, v, w) and the angular velocity (p, q, r ).

5.2 Dynamics constraints

The values of the limitations on inputs are the following :
µmin = −2π

3 rad µmax = 2π
3 rad TMmax

= 115N TTmax
= 100N

From the motion generation, we find
Tf = 10s
Figure 10 presents the three forces F respectively in the x, y and z directions. Figure 11 and
figure 12 show respectively the linear velocity (u, v, w) and the angular velocity (p, q, r).
we can verify that the constraints are respected.

6 CONCLUSIONS

Blimps are a highly interesting study object due to their stability properties. The classical
theory of airship stability and control is based on a linearized system of differential equa-
tions usually obtained by considering small perturbations about a steady flight condition.
However, the constraints of staying within the linear flight regime are excessive. The design
of advanced control system must take into account the strong non linearities of the dynamic
model. In this prospect, in the first part of this paper, we have discussed kinematics and
dynamics of a blimp, using Newton Euler approach. A direct generalization of this model is
to introduce the effects of the vertical and horizontal control surfaces. In the second part of
this paper, we have discussed characterization of some helices for airships. Trimming tra-
jectories have been presented. They consist in helices with constant curvature and torsion.
When specifying a trajectory, the physical limits of the system must be taken into account.
For trim flights, we propose a motion generation problem by minimizing the travelling time,
given realistic constraints, the generated forces and the tilt angle. Then, generalized helices
with vertical axes have been introduced where the curvature and the torsion have a quadra-
tic variation versus the curvilinear abscissa. We are actually investigating how to rejoin any
two situations (position and orientation) in space. Is one helix enough or do we need more
than one? The path planning and motion generation topics are still a very active research
area.
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Figure 1: Frames of the blimp
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Figure 2: classical helix
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Figure 3: projection of the helix in the X-Y plane
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Figure 4: A generalized helix with vertical axis
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Figure 5: angle beta
.
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Figure 6: Curvature of the helix
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Figure 7: Forces in the X-Y-Z directions-kinematics constraints
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Figure 8: linear velocities-kinematics constraints
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Figure 9: angular velocities-kinematics constraints
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Figure 10: Forces in the X-Y-Z directions-dynamics constraints
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Figure 11: linear velocities-dynamics constraints
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Figure 12: angular velocities-dynamics constraints
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