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Abstract: This paper presents an adaptation of Lowe's numerical model-based camera
localisation algorithm to the domain of indoor mobile robotics. While the original method is
straightforward and even elegant, it nonetheless exhibits certain weaknesses. First, due to an
affine approximation, the method is not consistent with perspective projection especially when
the dimensions of objects seen are large in comparison with their distances to the camera.
Next, the non-linearity of equations makes convergence properties sensitive both to the initial
solution estimate and to noise. By taking the specificity and exigency of the mobile robotics
domain into account, a new formulation of this method is proposed in order to improve
efficiency, accuracy and robustness in the presence of noisy data and variable initial
conditions. According to this formulation, line correspondences are used rather than points,
the number of degrees of freedom is reduced, the affine approximation is removed and
rotation is uncoupled from translation. Test results with both synthetic and real images
illustrate the improvements expected from theoretical modifications.

1. Introduction

The problem of camera localisation relative to real-world objects using a single view arises in
several types of applications, such as object recognition, hand-eye co-ordination and visual
navigation. A wide range of methods for this type of camera pose recovery has been studied
in the literature. They can all be grouped and designated under the term "model-based
localisation" by virtue of sharing the basic principle of using a priori knowledge (a model) of
the geometry of objects in the viewed scene. The location of a real-world feature on the image
is constrained by projection rules and camera characteristics (intrinsic parameters) on one side
and by the location of this feature relative to the camera (extrinsic parameters) on the other. In
respecting the mathematical formalism of this assumption, a correspondence between a
geometric feature of the 3D real world and its 2D projection on the image can be expressed in
the form of an equation whose unknowns are the extrinsic parameters that contain the desired
camera location. The problem then consists of establishing a sufficient number of 3D-2D
correspondences to recover all of the parameters.
These methods however differ from one another in many aspects: the internal camera model,
the kinds of features used for correspondences, the mathematical formalism used to express
the location (position and orientation) of 3D objects, the computational technique, the number
of unknowns, etc.

The majority of these methods use points or lines as features for the 2D-3D correspondences
and are based on matching a model feature to its presumed projection obtained from image
measurements. Each match yields an equation whose unknowns are functions of the
translation vector and the rotational matrix between a real world-related frame and a camera-
related frame.
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Two main groups can be distinguished herein: analytical methods and numerical methods. An
analytical solution consists of resolving a set of non-linear equations. The number of
equations must be the same as the number of unknowns (generally 6 in all: 3 for translation
and 3 for rotation). If additional equations are available, they are used to remove ambiguity
due to a possible multiplicity of solutions. One of the first analytical methods was presented
by Fischler and Bolles [1], who recovered the camera location by computing the distances
between the optical centre and three points of the modelled rigid object. The set of equations
is then obtained using the distances between each couple of modelled points and the angles
between the lines of sight for each image point. The system is thereby transformed into an
eight-degree polynomial equation. The authors established that for three correspondences, up
to eight solutions may be found. Dhome [2] gives another analytical method based on line
correspondences. He first decomposed the global transformation between world frame and
camera frame into two transformations by introducing an additional frame whose xy plane is
the interpretation plane of one of the line segments. The first transformation is thus
completely independent of the modelled object, and the author then computed two unknown
angles. As with the previous method, the system gets transformed into an eight-degree
polynomial equation. One problem encountered with these methods is the presence of
multiple solutions. Quan [3] presents a linear method to identify a unique solution using four
or five-point correspondences. Another problem is the presence of noise in image
measurements within all practical applications. This noise exerts an effect on the accuracy of
the recovered location. Dhome notes that his method must not be contrasted with a numerical
method, but rather is to be used for the purpose of initialisation since it yields all of the model
space attitudes compatible with the interpretation of the three lines.

In numerical methods, an error function expresses the distances between each image feature
and the projection of the corresponding feature in the real world using the current camera
location. The transformation is then corrected iteratively starting from the initial estimate of
the location in a minimisation process, such as the least-squares method. This approach is
better adapted to problems in which measurements are noisy and especially when the system
of equations is over-determined (i.e. the number of correspondences is greater than the
number of unknowns), yet convergence is not always guaranteed. Due to the non-linearity of
perspective projection equations and the expressions of location as a function of extrinsic
parameters (particularly for rotation), convergence depends on both the minimisation method
chosen and the quality of the initial location estimates.

One numerical method has been presented by Lowe [4,5,6]. In expressing the error function,
the distance between the projection of each point of the model and the corresponding point
seen on the image is written as a function of the location parameters. To ensure the efficiency
of the algorithm, the translation is expressed within the camera frame. In order to use
Newton's optimisation method, Lowe needed to express the partial derivatives of the error
function in each location parameter. To achieve this step, the translation is expressed within
the camera frame and an affine approximation is derived of the distance from each point to
the optical centre, by considering that this distance is the same for all points. In addition, the
correction of each of the three rotational parameters at each iteration is considered small
enough to assume that the three basic rotations are independent. These approximations
provide an elegant linear system of equations, yet give rise to many convergence problems.
Araujo and Carceroni [7] removed the affine approximation on the third component of the
translation vector and showed, by means of experimental evaluation, that convergence
performance is improved. The approach proposed by Liu [8] uses line correspondences. The
error function expression is obtained by the scalar product of the director vector of each
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modelled segment and the vector normal to the interpretation plane of the corresponding line
on the image. The rotation and translation are uncoupled. Two solutions are forwarded
therein: a linear solution that requires more than nine correspondences, and a non-linear
solution using at least three correspondences. Unfortunately, the latter solution is ineffectual
when the unknown angles are larger than 30°. Phong and Horaud [9] improved this method by
introducing both the unit quaternions to express rotation and a minimisation algorithm
featuring better global convergence characteristics. Other authors have used simpler camera
models, such as weak perspective, para-perspective and affine camera models [10,11,12],
with almost all being based on point correspondences. These models may be applied when the
dimensions of the viewed objects are small in comparison with the distance from the optical
centre.

This paper focuses on the application of camera localisation techniques in the domain of
mobile robot self-localisation. After analysing the specificity and exigency of this domain, a
new formulation of Lowe's algorithm is developed. The aim of this work is to obtain an
algorithm for camera pose recovery offering improved performance (in terms of efficiency,
robustness and accuracy). Within this formulation, the affine approximation of the original
formulation is removed in order to better incorporate full-perspective effects. The number of
degrees of freedom of the system is reduced depending on the specific domain of the mobile
robotics context. The translation and rotation recovery is uncoupled. In Section 2, the original
formulation is presented. Section 3 discusses modifications and improvements to the
algorithm in order to adapt it to the context of mobile robot localisation. Simulations and
experimental results are then displayed in Section 4 to illustrate the performance of the
derived method in comparison with that of the original method.

2. Lowe's algorithm formulation

Let's consider a co-ordinate system related to both a geometrically-modelled 3D environment
and a set of points Pi(Xi,Yi,Zi) of a rigid object expressed in this frame. Let's include a second
co-ordinate system related to the camera such that its origin Oc is the optical centre and the z-
axis is normal to the image plane located a distance f (the focal lens) from Oc (see Figure 1).
In considering a pinhole model, the intrinsic camera parameters αu, αu, u0 and v0 can be
obtained by means of calibration [13,14,15].
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Yc

Zc

(ui,vi)

Image
plane
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Z

Pi(Xi,Yi,Zi)
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Figure 1: Perspective projection
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If we assume that the transformation between the two frames is a rotation R and a translation
T, we can compute the estimated projection ui,vi of Pi on the image as follows:
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In equation (1), (xi, yi, zi) specify the coordinates of Pi in the camera frame.

Let's now consider the set of corresponding pixels (umi, vmi) measured from the image. The
pose recovery problem then consists of computing the optimal translation vector and
rotational matrix that minimise the errors eui = ui - umi and evi = vi - vmi. With an initial
estimate of R0 and T0 and assuming the local linearity of ui,vi as functions of the location
parameters, we can apply Newton's method to iteratively reach the optimal R and T by
computing at each step the correction for each location parameter. We must first express the
Jacobian matrix of the partial derivatives of ui and vi with respect to these parameters. In order
to achieve greater efficiency, Lowe reshaped the translation parameters as follows:
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In equation (3), (xi, yi, zi) are the co-ordinates of Pi obtained by applying the rotation R-1 on
the world frame. Dx and Dy specify the object location in the image plane and Dz the distance
between the object and the camera's optical centre.

Newton's method does not require an explicit representation of individual rotational
parameters, but merely a way both to modify the original orientation in mutually-orthogonal
directions Ψ, θ and φ about the x, y and z-axes of the camera co-ordinate system and to
calculate the partial derivatives of ui and vi with respect to rotational parameters Ψ, θ and φ.
On this basis, Lowe elected to maintain the initial specification of R (i.e. a 3x3 matrix) and to
combine it with an incremental rotation composed of the three basic rotational corrections. He
obtained a simple form for the partial derivatives presented in Table 1. Note that with this
specification of rotation, the correction matrix is to be evaluated at each iteration once the
correction of parameters reducing algorithm efficiency has been calculated.

ui vi

Dx 1 0
Dy 0 1
Dz -αuc

2xi -αvc
2yi

Ψ -αuc
2xiyi -αvc(zi+yi

2)
θ -αuc(zi+xi

2) αvc
2xi

φ cxi Cyi

Table 1: Partial derivatives of ui and vi with respect to location parameters
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where: c = 1/zi + Dz.

Each model point matching an image point yields two linear equations of the following form:
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With at least three correspondences, the six location parameters can be recovered.

The problem with the previous formulation is that Dx and Dy are assumed to be approximately
constant for all points of the viewed object, when in fact they depend on the distance of each
point to the optical centre. Such an assumption is not consistent with perspective projection,
especially if the dimensions of the object are not sufficiently small in comparison with its
distance from the camera. Araujo and Carceroni [7] remove this affine approximation and
propose a fully-projective formulation of Lowe's algorithm; they have rewritten equations (1)
and (2) as follows:
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The revised partial derivatives are presented in Table 2.

ui vi

Dx αuc 0
Dy 0 αvc
Dz -αuac2 -αvbc2

Ψ -αuac2yi -αvc(zi+bcyi)
θ αuc(zi+acxi) αvbc2xi

φ -αucyi αvcxi

Table 2: Partial derivatives of ui and vi with respect to location parameters

where: [a b c] = [xi+Dx  yi+Dy  1/zi+Dz].

3. Adaptation of Lowe's algorithm to a mobile robotics context

In the application herein, a mobile robot moves in a partially-modelled 3D indoor
environment, such as a flat. The model includes walls, the floor, the ceiling, windows, doors
and some heavy pieces of furniture. The camera is mounted onto the robot's mobile base and
takes perspective views from its current location. A set of features are extracted from the
image and matched with those of the model. The pose recovery process is then applied.

To adapt Lowe's technique to the domain of mobile robot self-localisation, the specificities of
this particular kind of application must be studied. Certain simplifications, such as reducing
the number of degrees of freedom, can lead to decreasing the complexity of the system of
equations and its non-linearity [16,17,18]. The context unfortunately generates greater
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exigency in terms of efficiency (real-time application), robustness (noisy data, ambiguities
due to multiple solutions) and accuracy. In the following sub-section, modifications carried
out on the original method are presented along with the set of factors influencing each choice.

Quality of the initial estimation

The performance of non-linear function optimisation using efficient algorithms has been
correlated with the quality of the initial solution estimation. The camera-localisation
technique belongs to the family of absolute localisation methods, which in general are
combined with dead-reckoning techniques to provide an estimate of the current robot location.
This information however may be not available in all instances, e.g. when resetting the
system, or may prove to be false due to the limitations of dead-reckoning. This observation
means that the quality of the initial estimate is not always guaranteed in this kind of real
application. A way to reduce the non-linearity of camera pose recovery equations must then
be found. Due to the dimensions of model objects used in mobile robotics (e.g. wall junctions,
doors, large furniture) in comparison with their distances from the camera, the use of a full-
perspective model of the camera is unfortunately nearly mandatory. Moreover, this model is
definitely non-linear. The approximation used in the original formulation of Lowe's algorithm
must be removed because it does not adequately incorporate the perspective effects.

The number of degrees of freedom

As seen below, camera location is characterised by a translation vector T = [tx ty tz] and a
rotational matrix R. T that represents the translation between the camera optical centre and
the origin of the world frame. The rotation R is composed of the three Euler angles Ψ, θ and φ
about the x, y and z-axes of the camera's co-ordinate system. R and T carry the camera frame
onto the world frame. In general, indoor mobile robots operate in a 3D environment, yet their
displacements are in a 2D horizontal space at a known and constant height from the ground. tz

and θ are thus assumed to be known and Ψ is zero. The system then becomes a 3 DOF
(degrees of freedom) system with 3 parameters (φ, tx and ty).

Making use of line correspondences

As discussed above, the majority of camera localisation methods are based on point or line
correspondences. In this application, the image is first segmented into contours. Contours
generally correspond to physical elements in the work space, such as edges constituted by
intersections between surfaces of the flat. These edges tend to be straight segments. Lines are
easier to extract from contour images and their characterisation by polygonal approximation is
reliable even in the presence of noise. Partial occlusion (due to the view angle or the presence
of non-modelled objects) does not affect line representation parameters. Furthermore, the
extremities of the edges that could possibly be considered as point features are not always
seen on the image due to the dimension of the flat edges in comparison with their distance to
the camera. These reasons make it more prudent to use straight line correspondences. Thus,
the 3D model can simply comprise a set of straight segments whose extremities have known
co-ordinates in the world frame.

Formulation of the method

In light of the previous assumptions, a formulation of Lowe's algorithm using straight line
correspondences is presented in this section. The translation is first expressed in the world
frame rather than the camera frame, in which case the number of unknowns can be reduced
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(as shown above). The rotational matrix between camera frame and world frame is calculated
as follows:
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A straight line on the image plane is characterised by a slope and a perpendicular distance to
the origin (see Figure 2). Let's consider a straight line of parameters ρmi and dmi extracted
from a segmented image. By projecting two arbitrary points P1i(X1i,Y1i,Z1i) and
P2i(X2i,Y2i,Z2i) of the corresponding model line using an initial estimate of tx, ty and φ, we
obtain two pixels p1i(u1i,v1i) and p2i(u2i,v2i) that form a straight line at a certain distance and
with a certain slope differential with respect to the measured line. The respective distances
from p1i and p2i to the image are:

d1i = cos(ρmi).u1i + sin(ρmi).v1i - dmi

d2i = cos(ρmi).u2i + sin(ρmi).v2i - dmi

Expressing d1i and d2i for each line correspondence with respect to the location parameters, an
error function is obtained whose minimisation yields the sought optimal values tx, ty and φ.
Replacing u1i, u2i, v1i and v2i by the expression in (9), the error function can be written as:
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Figure 2: Expression of the error function using line correspondences
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Uncoupling the translation and rotation

The system of equations (9) is non-linear and contains multiple unknowns. Convergence
properties are highly dependent upon the quality of the initial estimate of the solution vector.
Many situations unfortunately arise in which the robot is “completely lost” in its environment
and has no perception of its actual location. An approach to reducing the effects of non-
linearity is to find a way to uncouple some of the variables. One solution then would consist
of first seeking to decrease the angles between each viewed and projected line pair and
afterwards reducing the resulting perpendicular distances. The first step is achieved by
minimising the difference between d1i and d2i or, in other words, by minimising the following
error function obtained from subtracting the two equations in (9):
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The rotation and translation parameters are now uncoupled. An initial estimate of the solution
can be found by analytically solving one of these equations. A numerical optimisation by
means of least squares using Newton's method is then to be applied.

Given the optimal angle φ, translation recovery becomes a linear problem, i.e.:
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In the new formulation, the error function is expressed directly with respect to location
parameters. The three basic component orientations are not considered as independent of one
another and their mutual orthogonality is taken into account in the equations. This means that
upon each function evaluation during an iterative minimisation process, the correction vector
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must simply be added to the actual parameter vector that reduces computational cost in
comparison with the original formulation.

Another advantage of this new formulation is the removal of singularity for the one-point
junction case. Lowe's method, as in the straight line-based methods of Liu [8], Phong [9] or
Dhome [2], diverges when all lines used for correspondences intersect at the same point. In
this case, the equations obtained are redundant; moreover, the system is not over-determined
and hence not well-suited for numerical optimisation.

4. Evaluation of the method

The presented 3DOF method has been tested on both synthetic and real images in order to
evaluate its performance in comparison with the fully-projective version of Lowe's algorithm
developed by Araujo and Carceroni [7]. According to the authors, this method displays better
performance than the original one. A new version using line correspondences of Araujo's
algorithm was first developed and then the 3DOF method was compared to this version.

Test conditions correspond to those for indoor mobile robotics applications in terms of
variations in pose parameters, noise on the data and the quality of initialisation.

Testing with synthetic images

Synthetic data allow for a statistical study with a large number of useful situations to help
estimate location accuracy, convergence properties and the robustness of each method.
A model of a flat room has been built with a set of straight segments (see Figure 3). The
camera simulator is then posed with various reference orientations and positions, and an
image of the model is simulated from each location. A set of 3D segments and synthetic line
correspondences is obtained for each image. Both the 3DOF method and Araujo's method are
then applied and the error between computed and reference poses gets calculated.

The reference locations were randomly generated by discarding those where the number of
visible segments was less than 3. Locations are represented by a vector of the six position and
orientation parameters [tx, ty, tz, Ψ, θ, φ], uniformly-distributed over the following intervals or
values:

[0m, 4m] for tx and ty,
[0.5m, 1.5m] for tz,
[-15°, +15°] for θ,
[-180°, +180°] for φ,
Ψ = 0°.

1,500 different situations were ultimately selected, with the number of correspondences
varying from 3 to 10.
To model imperfections of the intrinsic camera parameter set, the image segmentation and the
polygonal line approximation errors, noise was added to image line parameters ρe and de.
Measured parameters ρm and dm have been obtained as follows:

ρm = ρe + 2.nl.δρ
dm = de + 5.nl.δd

where the values of δρ and δd are uniformly distributed over the interval [-1, +1] and nl
defines the noise level. For each location, the two algorithms were executed with nl varying
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from 0 to 1, thereby introducing perturbations on parameters that vary from 0° to 2° for ρm

and from 0 to 10 pixels for dm.

In order to study the effects of initial estimation quality, algorithms were tested with
randomly-generated vectors of initial location parameters. The difference between the φ
component of the initial parameter vector and the reference angle varied between 5° and 90°.
In all, more than 36,000 test runs were performed for each method.
Results presented in the following section indicate the rotational error ∈φ and translation error
∈T, as defined by: ∈φ = | φreference-φcomputed |, ∈T = || Treference - Tcomputed ||.

Analysis of results

The results shown below are obtained after eliminating the 1% of extreme cases. This step has
been dictated by the fact that a method which, in the general case, shows good convergence
properties can suddenly diverge for some singular cases and influence the analysis of results.

Accuracy
The results in Figure 4 give mean values and standard deviations of the rotational and
translation errors obtained with different noise levels. In general, they reveal that the 3DOF
algorithm converges toward a better approximation of the actual location. The lower level of
the standard deviation of these results indicates that this method is more reliable in the
presence of noise. Practically speaking, the accuracy at a reasonable noise level satisfies the
exigencies of mobile robotics, which are typically about 2° for rotation and 10 cm for
translation.
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Figure 3: An example of a 3D work space model
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Figure 4: Localisation accuracy, ð : Araujo's method  Ο: 3DOF method

Convergence speed
In Figure 5, the evolution of rotational error with respect to the number of iterations is
analysed. The noise level was set at nl = 0 and the initial orientation at an angle of 10° from
the solution. For this simulation, it clearly appears that the 3DOF method provides a faster
decrease in error and requires fewer iterations to reach an acceptable error level. This
observation implies that if a compromise between real-time performance and accuracy were
to be found by limiting the number of iterations in real applications, the 3DOF method would
be of greater use.
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Figure 5: Localisation error evolution, ð : Araujo's method  Ο: 3DOF method

Sensitivity to the quality of initial solution estimation
Figure 6 presents the influence of the quality of initialisation on each algorithm. Results
obtained with nl = 0 denote the rotational error mean value and standard deviation with
respect to a rotational initialisation quality defined by: ∆φ = | φreference - φinitialisation |. It appears
that while the performance of Araujo's method progressively deteriorates, the 3DOF method
remains reliable until a stable threshold around 60° has been reached. This feature makes the
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3DOF method better adapted for real mobile robot localisation applications in which the
initialisation error cannot be accurately defined, but may simply be overestimated. An error
margin of 120° (-60° to +60° around the reference) can be considered as comfortable in a
mobile robotics context.
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Figure 6: Sensitivity to the quality of initialisation, ð : Araujo's method  Ο: 3DOF method

Sensitivity to the number of line correspondences
Another interesting result is the evolution in localisation accuracy with respect to the number
of available line correspondences. In practical situations, the number of extracted and
correctly-matched lines varies with the visibility angle, light conditions, etc. Results in Figure
7 show the mean value and standard deviation of rotational and translation errors as a function
of the number of correspondences for two distinct noise levels of nl = 0 and nl = 0.5. The
accuracy of the 3DOF method is practically constant even as the number of correspondences
decreases to the requested minimum. In contrast, Araujo's method is very sensitive to this
number and almost becomes stable only when the number of correspondences is greater than
7.
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Figure 7: Sensitivity to the number of correspondences, ð : Araujo's method   Ο: 3DOF method



Omar AIT-AIDER, Philippe HOPPENOT, Etienne COLLE: " Adaptation of Lowe's camera pose recovery
algorithm to mobile robot self-localisation" - Robotica 2002.

Submitted version - February 2002 13/15

It should be noted that sharply better results can be obtained using minimisation methods with
better convergence properties, such as Levenberg-Marquardt or trust region.

Testing with real images

The goal of this test is to confirm the applicability of Lowe's new formulation method, as
presented herein, in a real application. The internal model of the SONY FCB-IX47 camera
was first calculated by means of a calibration procedure. A 3D model of a portion of the
laboratory was then established and the camera was posed at several locations. For each
location, two images were taken without moving the camera. On the first image, a set of
known points was added to the environment in order to refine the reference location estimated
by manual measurements using a calibration procedure for calculating extrinsic parameters.
The 3DOF method was then run using the second image. Sample results are presented in
Table 4. Figure 8a shows a sample of the images used in these tests. Lines extracted from
image contours (Figure 8b) have been matched with lines estimated by model projections
(Figure 8c).

Image number Rotational error (°) Translation error (m)
1 0.20 0.00
2 0.30 0.00
3 0.46 0.00
4 0.50 0.01
5 0.50 0.02
6 0.53 0.02
7 1.56 0.05
8 1.60 0.05
9 1.80 0.07

10 2.10 0.08
11 2.80 0.08
12 2.90 0.11

Table 3: Sample of results from tests on real images

The results in Table 3 show that the rotational and translation error distributions obtained
serve to confirm the statistical results of the simulation. In comparison with simulation tests,
nl can be situated between 0.25 and 0.75. From these initial results, the 3DOF method seems
well adapted to mobile robotics in terms of accuracy.
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Figure 8: Test with real images: a-original image; b-image lines; c-projected model lines
Figure 8-a                                    Figure 8-b                                 Figure 8-c
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5. Conclusion and further work

A new formulation of Lowe's camera pose recovery method was implemented for the mobile
robot self-localisation application. In light of the specificity of the domain, certain
modifications were performed on the original formulation:
- straight line correspondences, rather than point correspondences, were used;
- equations were expressed in a way that allows reducing the number of degrees of

freedom and using the full-perspective projection;
- the full-perspective projection model was used to remove affine approximations from the

original formulation; and
- error functions were expressed directly with respect to location parameters.

Results show that these modifications considerably improve performance of the original
method. The improvements are significant in that they add reliability and accuracy to this
pose recovery algorithm for the automatic 2D-3D matching problem. The matching
algorithms used for generating 2D-3D correspondence hypotheses do indeed call upon pose
recovery procedures in their inner loops. One example would be prediction-verification
methods [4,19] or focal extensions. The time savings are then multiplied by the number of
calls on the pose recovery algorithm, with this number varying to a wide extent depending on
the number of correspondences, geometric constraints and the initial solution estimate.
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